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(nonlinear) self-consistency equations are formulated in
terms of the electronic charge density and after discretiza-We discuss several methods for accelerating the convergence of

the iterative solution of nonlinear equation systems commonly in tion they are solved by iteration (for a more detailed de-
use and point to interrelations between them. In particular we inves- scription see Ref. [9] and references therein).
tigate two of the most sophisticated schemes, namely the Anderson Usually each of these iterations itself needs a lot of CPU
mixing and the Broyden update, both generalized to the consider-

time and thus reducing their number by accelerating theation of arbitrarily many previous iterations. For the Broyden
convergence would save computer resources or else allowmethod we give a new derivation which is much simpler than that
for larger systems to be investigated [10]. As concernsrecently proposed by Vanderbilt and Louie. We show that if the

additional parameters invented by these authors in order to increase these general demands, we believe electronic structure cal-
flexibility are used to optimize the convergence of the iteration culations are no exception.
process they in fact cancel out. In addition we prove that in this In order to get a better feeling of which method would
(optimal) case the Anderson mixing and the Broyden update as

be best suited to the context just outlined we started theapplied to the inverse Jacobian are fully identical. Thus we come
present analysis of convergence acceleration schemes.to the conclusion that neither of these schemes is superior. More-

over, we show that Broyden update of the inverse Jacobian is supe- Here we concentrated especially on quasi-Newton–
rior to updating the Jacobian itself. Finally we propose an extension Raphson schemes and generalized secant methods. When
of the Anderson mixing which avoids the numerical difficulties all applying the former class to nonlinear equation systems
these methods are faced with. Q 1996 Academic Press, Inc. we are led to Broyden’s rank-1 update [1, 3, 6, 11–15] and

a recent generalization of this scheme which was initiated
by Vanderbilt and Louie and improved the quality of theI. INTRODUCTION
method substantially [16–18]. An example for the general-
ized secant methods, in contrast, is the Anderson mixingBoth the application and development of effective tech-
scheme which has been used quite often for self-consistentniques for multidimensional optimization and the solution
electronic structure calculations [1, 10, 19–22].of nonlinear equation systems have been the subject of a

However, when going into more detail we realized thatrapidly growing interest in the last years [1–6]. The method
the actual formulation of the generalized Broyden methodof choice in this context is iteration and so we are likewise
as given by Vanderbilt and Louie, as well as by Johnson,faced with an extensive work on schemes to achieve and
in fact, is too elaborate. This may be partially traced back toaccelerate convergence. According to common appraisal
their inclusion of additional weights as a means to increasethe most sophisticated ones nowadays seem to be conju-
flexibility of the method. Still, as we observed, thesegate-gradient, Newton–Raphson and quasi-Newton–
weights actually cannot be used to accelerate the iterationRaphson, modification, or variable metric schemes.
process. Hence, with the weights omitted we were able toLike in many other areas methods for improving conver-
derive a new formulation of a generalized Broyden methodgence have also found entrance in the authors own research
which is fully in the spirit of the original ansatz by Broydenfield, namely first principles electronic structure calcula-
and, thus, very simple.tions of condensed matter. Here we rely on density func-

The Broyden scheme can be used to update either antional theory and the local density approximation which
approximate Jacobian or else an approximate inverse Ja-

in an approximate manner cast the full many-body problem cobian. In the language of the original Broyden update
connected with the system of interacting electrons into these two are referred to as the first and second methods,
a single-particle self-consistent field problem [7, 8]. The respectively [11]. As concerns the relation between these

schemes, we came to the conclusion that updating the
inverse Jacobian leads to faster convergence for princi-*Present address: Hahn-Meitner-Institut, Glienicker Straße 100, D-

14109 Berlin; Email: eyert@physik.uni-augsburg.de. pal reasons.
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When dealing with the Broyden scheme for the inverse In order to achieve convergence, i.e., to arrive at a van-
ishing norm kF (l)uF(l)l 5 0 as soon as possible one has toJacobian we furthermore became aware of its full identity

to the Anderson mixing. At the same time we were faced combine all the vectors known from previous iterations in
an optimal way in order to provide for the most promisingwith the common opinion regarding the former that, in

general, it is superior to the latter. Since, due to our investi- input vector for the following iteration, ux(l11)l. As already
mentioned in the Introduction different schemes have beengations, this point of view is not justified and, moreover,

might hinder the optimal use of the methods available, we developed for approaching this main goal in the past. Some
of these we will outline next in order of increasing complex-saw the need for a few words which might help clarify the

situation a bit. ity. According to the context of electronic structure calcula-
tions we will thereby limit ourselves to the case where theWe start out in the following section with a definition

of the underlying mathematical problem and the corre- exact Jacobian
sponding notation. In addition, we present a test case which
will be used to illustrate the findings of the following sec-

J (l)
ij 5

F (l)
i

x(l)
j

(2.3)tions. We proceed with a survey of different methods,
including the simple mixing, the Anderson mixing, and our
new derivation of the generalized Broyden method. In is not available. Still we avoid using the underlying physics
Section VI we discuss the modified Broyden method by by incorporating response functions [13, 14].
Vanderbilt and Louie, i.e. the generalized Broyden method Throughout this work we will use a simple numerical
with the weights included. example to illustrate our results. This test case was pro-

Section VII relates the different versions of the Broyden posed by Vanderbilt and Louie and is defined by the follow-
method to each other, and furthermore, turns to the detailed ing recipe to calculate the residual vector for a given input
comparison of the Anderson and the Broyden scheme. In vector [16]:
Section VIII we deal with numerical problems and propose
an extension of the Anderson mixing. The conclusion finally Fi 5 2diixi 2 cx3

i for i 5 1, ..., 5. (2.4)
summarizes the most important of our findings.

Obviously the solution vector has the components xi 5 0.II. DEFINITION OF THE PROBLEM
The diagonal matrix d and the scalar c are given by

In general all multidimensional iterative procedures may
dii 5 (3.0, 2.0, 1.5, 1.0, 0.5), c 5 0.01 (2.5)be defined by a nonlinear operator which when applied to

an input vector ux(l)l of length N produces an output vector
and the starting vector is chosen to have the componentsu y(l)l of the same length. Here the superscript l denotes

the iteration number, l $ 1 and we have used Dirac’s
notation. Self-consistency is achieved when both vectors xi 5 1. (2.6)
coincide or, equivalently, when the residual vector de-
fined by In contrast to many more realistic test calculations the

above example has the distinct advantage that it could be
uF (l)l :5 u y(l)l 2 ux(l)l (2.1) very easily implemented, as well as reproduced.

vanishes. III. SIMPLE MIXING
Since it is actually the length of the residual vector which

will be used as a measure of the convergence reached so In the simple mixing scheme the input and the output
far it is useful to define a norm in the space spanned by vector of the actual iteration are just mixed linearly this
the input and output vectors. Going on we define a scalar resulting in the following input vector for the forthcom-
product of two vectors ual and ubl by ing iteration:

ux(l11)l 5 ux(l)l 1b(l)uF (l)l, (3.1)kaubl :5 ON
i, j51

aigijbj . (2.2)

where b(l) is the socalled mixing parameter which may
vary from one iteration to another but usually does not.Here we have, in addition, invented a positive definite

metric which is useful when dealing with inhomogeneous Obviously b(l) 5 0 means to take the old input vector once
more and b(l) 5 1 corresponds to using the output vector ofiteration vectors. An example often quoted in this context

is the simultaneous iteration of charge and spin densities the actual iteration directly as input vector for the following
iteration. The latter choice in most cases leads to oscilla-[22].
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tions and, if not damped, to a divergent iteration process. which has to be solved in order to yield the coefficients
q(l)

j and, hence, the linear combination with the shortestIn general the simple mixing depends very sensitively on
the choice of the mixing parameter, but experience has residual vector.

Having found this optimal linear combination we fix theshown that setting b(l) P 0.5 or a little less is a good choice
for simple systems. However, as Dederichs and Zeller have input vector for the subsequent iteration by
outlined in a detailed study there exist many cases where
b(l) has to be fixed to a much smaller value [20]. ux(l11)l 5 ux(l)l 1 b(l)uF (l)l, (4.4)

The simple mixing usually needs many iterations before
convergence is reached since it forgets about all the infor- where b(l) again is the mixing parameter. This looks quite

similar to the recipe used for the simple mixing. However,mation gained from previous iterations and, even worse,
fixes the linear combination of input and output vector ar- there we mixed the input and output vectors of the actual

iteration directly, whereas now we use the optimal linearbitrarily.
combination of the input and output vectors within the
spaces spanned by the vectors of the M previous iterations.IV. ANDERSON MIXING
This means that in the Anderson mixing the memory of
the whole iteration process is built in which helps findingWhereas in the simple mixing only the input and output
the final solution quite fast. Still the Anderson mixingvector of the actual iteration are used to calculate the new
scheme may be reduced to the simple mixing by settinginput vector the mixing scheme introduced by Anderson,
M 5 0 thus switching the memory off.in addition, takes the vectors of the previous iterations

It has been argued by several authors, including Ander-into account and combines them in a much better way [19].
son, that near convergence linear dependencies within theThough the Anderson scheme is one of the most powerful
system of residual vectors might evolve which hinder themethods which leads to very fast convergence, as we will
accurate solution of the above linear equation system [19,see later on, it is still quite simple as concerns the underly-
17]. For this reason it was proposed to reduce the numbering concept.
M of previous iterations to be mixed in to only a few and,Let us begin its description by first defining general vec-
actually, in many applications M is set to two. As we willtors in the M-dimensional subspaces spanned by the input
explain in more detail in Section VIII these arguments doand output vectors, respectively, of the M previous itera-
not really hold since there exist very simple means to avoidtions to be considered. They are given by
problems of that kind. Nevertheless, as Anderson has
pointed out the power of his method increases slowly for
M . 3 since then we only mix in poor vectors of the earlyux(l)l :5 ux (l)l 1 OM

j51
q(l)

j (ux(l2j)l 2 ux(l)l) (4.1)
iterations. Hence he suggested that in practice M 5 4 or
5 should be used.

As concerns the mixing parameter b(l) Anderson pro-in the space spanned by the input vectors and by a corre-
posed to avoid the choice b(l) 5 0 in order not to get stucksponding equation for the output vectors. Note, that 0 #
in the space spanned by the previous input vectors. InM # l 2 1 and that the coefficients q(l)

j are as yet not
contrast, he found b(l) 5 1 most appropriate but admittedspecified. Again we prefer working with the residual vec-
that the optimal value should be adjusted empirically. Intors instead of output vectors and define the general resid-
this context it should be noted that since we minimize theual vector by
length of the vector uF (l)l, the second term in Eq. (4.4)
and, hence, the influence of the mixing parameter becomes

uF (l)l :5 uF (l)l 1 OM
j51

q(l)
j (uF (l2j)l 2 uF (l)l). (4.2) smaller when approaching convergence.

Next we focus the readers attention to a particular as-
sumption underlying the Anderson mixing, namely that

Now we fix the coefficients q(l)
j by the requirement that the linear approximation holds when expanding a residual

they yield that particular linear combination which mini- vector in terms of input vectors near the optimal position.
mizes the norm of the general residual vector E :5 This is implied by choosing the same coefficients in the
kF (l)uF (l)l. Minimizing with respect to the coefficients linear combinations (4.1) and (4.2) for the general input
q(l)

j we are led to the linear equation system and residual vector and should be kept in mind when com-
paring to Broyden’s methods.

As concerns storage and computer time considerationsOM
j51

kF (l) 2 F (l2i)uF (l) 2 F (l2j)lq(l)
j

(4.3)
the Anderson method needs storage of the (2 M 1 2) N-
component vectors ux(l)l and uF (l)l of the actual and the
M previous iterations, and, furthermore the solution of a5 kF (l) 2 F (l2i)uF (l)l ;i51,...,M ,
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linear equation system of order M. This is quite moderate J(l11). This we will fix by the condition that first it has to
fulfil Eq. (5.1) above, namely,and seems to be the minimum to be reached by the more

sophisticated methods.
uDF (l)l 5 J(l11)uDx(l)l, (5.4)

V. BROYDEN UPDATE
which J(l) did not; here we have defined the difference
vectorsWe now turn to the discussion of the methods introduced

by Broyden including the recent developments introduced
uDx(l)l :5 ux(l11)l 2 ux(l)l (5.5)by Vanderbilt and Louie which put the method much for-

ward [11, 16, 17]. Nevertheless, as already mentioned in
the introduction the new ideas of the latter authors actually and
may be incorporated in the original scheme in a much
more straightforward way which leads to what we call the uDF (l)l :5 uF (l11)l 2 uF (l)l. (5.6)
generalized Broyden method. This we will outline in the
following whereas the discussion of the modified Broyden The important point to note now is that the constraint
method worked out by Vanderbilt and Louie and its com- (5.4) fixes only the projection of the new Jacobian onto
parison to our formalism are postponed to Sections VI the vector uDx(l)l. Clearly, the same holds for the update
and VII. J(l11) 2 J(l) for which we have from Eq. (5.4)

In order to make the simplicity of our approach even
more clear and to relate it to the original ansatz by Broyden (J(l11) 2 J(l))uDx(l)l 5 uDF (l)l 2 J(l)uDx(l)l. (5.7)
we start out with a brief description of that scheme:

The approach underlying the methods introduced by Being a bit formal we next write the update as
Broyden at first glance seems to be quite different from
the Anderson mixing scheme discussed before [1, 3, 6, 11,

J (l11) 2 J (l) 5 (J (l11) 2 J (l))
uDx(l)lkDx(l)u
kDx(l)uDx(l)l

(5.8)
12]. It does not aim at a minimization of a general residual
vector, but rather at an optimal Jacobian from which an
input vector for the following iteration can be calculated.

1 (J (l11) 2 J (l)) FI 2
uDx(l)lkDx(l)u
kDx(l)uDx(l)lG ,

Broyden’s first method is a quasi-Newton–Raphson
method updating an approximate Jacobian. Like the An-
derson mixing it starts out from the assumption that the where I is the unity operator and the second term just
linear approximation is justified when expanding the resid- presents the projection of the update onto the space or-
ual vector in terms of the input vectors and, hence, the thogonal to uDx(l)l. As Broyden argued, there is no reason
residual vector of the subsequent iteration could be writ- for this projection not to vanish and this way he arrived
ten as at his rank-1 update formula,

uF (l11)l P uF (l)l 1 J(l)(uxl11l 2 ux(l)l), (5.1) J (l11) 2 J (l) 5
1

kDx(l)uDx(l)l
(5.9)

where J(l) is the Jacobian, approximated by (uDF (l)lkDx(l)u 2 J (l)uDx(l)lkDx(l)u).

As an initial guess for the Jacobian J(1), Broyden proposed
J(l)

ij P
F (l11)

i 2 F (l)
i

x(l11)
j 2 x(l)

j
. (5.2) to use a constant diagonal matrix corresponding to a simple

mixing for the first iteration, i.e.,

If, furthermore, the residual vector on the left-hand side
J (1) 5 2

1
b(1) I . (5.10)of Eq. (5.1) is required to vanish we arrive at the following

proposal for the new input vector:

Later on Dennis and Moré pointed out that the Broyden
ux(l11)l 5 ux(l)l 2 (J (l))21uF (l)l. (5.3) update formula (5.9) could be equally well derived if the

Jacobian J (l11) is forced to fulfil Eq. (5.4) and, in addition,
the distance between the Jacobian and its predecessor J (l)However, we do not really expect the linear approximation

to work well far away from the final solution and, hence, is required to be minimal in the sense of the Frobenius
norm [12]. In other words, we have to minimize the Frobe-the residual vector uF (l11)l in most cases does not vanish.

Then we would have to find a new estimate for the Jacobian nius norm
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store the huge matrix. Leaving this problem for later, weE 5 iJ (l11) 2 J (l)i2 5 O
ij

uJ (l11)
ij 2 J (l)

ij u2 (5.11)
will first turn to the above-mentioned generalization of the
Broyden update which is based on an important argument

with the constraint (5.4). Defining made by Vanderbilt and Louie [16]. They started out from
the observation that in the original approach taken by

E 9 5 E 1 klu[uDF (l)l 2 J (l11)uDx(l)l], (5.12) Broyden the Jacobian is updated from the knowledge of
the actual iteration only and the information gained by all

where ull is a vector of Lagrange multipliers, we minimize previous iterations is not explicitly taken into account. As
above expression with respect to the elements of the Jaco- they pointed out, this way the memory as contained in the
bian J (l11) and arrive at the rank-1 update Jacobian may be arbitrarily overwritten and, hence, the

systematics of the whole scheme is lost.
J (l11) 2 J (l) 5 As ullkDx(l)u. (5.13) In order to overcome this weakness Vanderbilt and

Louie claimed that the forthcoming Jacobian J (l11) should
Inserting this into Eq. (5.4) we get not only satisfy Eq. (5.4) but, in general, the set of condi-

tions
uDF (l)l 2 J (l)uDx(l)l 2 As ullkDx(l)uDx(l)l 5 0 (5.14)

uDF (m)l 5 J (l11)uDx(m)l ;m51,...,l . (5.19)
which when combined with Eq. (5.13) again leads to the
Broyden update formula (5.9). Hence the derivation based

Due to this ansatz all the information collected so faron a minimization is tailored such that it reproduces the
in the iteration process could be used in an optimal way.original result [12]. This should be kept in mind whenever

Taking this as a starting point Vanderbilt and Louiegeneralizing the Broyden method and using the formula-
derived a modified Broyden method which generalizes thetion as a minimization process.
original scheme. However, unfortunately they formulatedThe Broyden update in the form (5.9) still has two dis-
their ideas on the basis of Broyden’s first method; i.e.,tinct disadvantages: It needs the storage of the full N 3 N
they worked with the Jacobian itself which has the above-Jacobian and in order to use it for Eq. (5.3) we have to
mentioned disadvantage.invert this, usually huge, matrix.

Moreover, and of even higher importance, when general-However, as is well known, the latter problem may be
izing the Broyden method for the inclusion of more thaneasily circumvented by employing Broyden’s second
one condition, Vanderbilt and Louie, in addition, intro-method which is based on updating the inverse Jacobian
duced a set of weights in order to gain more flexibility ofinstead of the Jacobian itself. The condition (5.4) for the
the scheme, resulting in the so-called modified Broydeninverse Jacobian G (l11) to be fulfilled then reads as
method. However, as we will show in detail in Section VII,
if these weights are interpreted as free parameters anduDx(l)l 5 G (l11)uDF (l)l. (5.15)
adjusted to optimal convergence of the iteration process
they in fact cancel out. Hence, they could be omitted fromEverything else proceeds as above and finally leads to the
the very beginning and the whole formalism would befollowing update formula for the inverse Jacobian,
much simplified. For this reason we will not follow these
authors here but, instead, derive a rather straightforward

G (l11) 2 G (l) 5
1
all

(uDx(l)lkDF (l)u 2 G (l)uDF (l)lkDF (l)u). generalization of the Broyden update which, in opinion,
is the simplest possible and which has the additional advan-(5.16)
tage of being fully in the spirit of the original scheme
by Broyden. Thereby we will concentrate on Broyden’sHere the matrix a is the overlap matrix of the difference
second method, i.e., the update of the inverse Jacobian.residual vectors, i.e.,

So we start out writing down the set of conditions for
the inverse Jacobian G (l11) which corresponds to Eq. (5.19)ank :5 kDF (n)uDF (k)l. (5.17)
and generalizes Eq. (5.15), i.e.,

Again we use for the first iteration the simple mixing ac-
uDx(m)l 5 G (l11)uDF (m)l ;m5l112M,...,l . (5.20)cording to

G (1) 5 2b(1) I . (5.18) In contrast to the constraint (5.19) given by Vanderbilt
and Louie we here have limited the number of conditions
to M previous iterations. This way we are able to get aBroyden’s second method thus avoids the inversion of

the Jacobian without loss of accuracy, but still we have to better control over the method, especially when comparing
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it to other schemes. Apparently, by setting M 5 l we get In order to prepare for the later discussion of the approach
due to Vanderbilt and Louie we complement the previousback Vanderbilt and Louie’s proposal.

An important point to note now is that the step taken derivation with the corresponding one, based on a con-
strained minimization of the Frobenius norm. In the pres-by Vanderbilt and Louie, namely the inclusion of the whole

set of conditions (5.20) changes the approach underlying ent context this means that we have to minimize
the Broyden method completely. Whereas in the original
scheme each new condition of the type (5.15) was used to E 9 5 iG (l11) 2 G (l112M)i2

(5.26)update the inverse Jacobian from its direct predecessor the
method now ignores all the inverse Jacobians calculated 1 Ol

m5l112M
kl(m)u[uDx(m)l 2 G (l11)uDF (m)l],

before and, instead, uses the conditions (5.20) and the
initial guess to evaluate the new inverse Jacobian directly.

where the second term traces back to the set of constraintsThis, furthermore, implies that, strictly speaking, the
(5.20) which are coupled by vectors ul(m)l of Lagrangemethod by now is no update scheme any more but, rather,
multipliers. Minimizing E 9 with respect to the matrix ele-a direct optimization of the inverse Jacobian. This becomes
ments of the inverse Jacobian G (l11) we get the rank-Mmost obvious when setting M 5 l, hence, when including
updateall previous iterations.

With this in mind we now rewrite Eq. (5.20) as

G (l11) 2 G (l112M) 5 As Ol

k5l112M
ul(k)lkDF (k)u (5.27)

(G (l11) 2 G (l112M))uDF (m)l 5 uDx(m)l
(5.21)

2 G (l112M)uDF (m)l ;m5l112M,...,l , which when inserted into Eq. (5.20) yields

which is just the set of conditions for the update G (l11) 2
uDx(m)l 2 G (l112M)uDF (m)l 2 As Ol

k5l112M (5.28)
G (l112M). As above, we present the latter in the form

ul(k)lkDF (k)uDF (m)l 5 0 ;m5l112M,...,l .G (l11) 2 G (l112M) 5 (G (l11) 2 G (l112M)) P F
(5.22)

1 (G (l11) 2 G (l112M))(I 2 P F) Multiplying this with the inverse of the overlap matrix,
we get

where P F is the projection operator onto the space
spanned by the states uDF (m)l, m 5 l 1 1 2 M, ..., l. This

As ul(k)l 5 Ol

m5l112M
(a21)mk[uDx(m)l 2 G (l112M)uDF(m)l] (5.29)operator is defined in the usual manner as

and, together with Eq. (5.27), we finally again arrive at theP F :5 Ol

n,k5l112M
(a21)nkuDF (n)lkDF (k)u, (5.23)

rank-M update formula (5.24).
To sum up, we combine Eq. (5.24) with Eq. (5.25) and,

where the matrix a is the overlap matrix (5.17). in order to get the input vector of the following iteration,
Next we follow again Broyden’s argument that the pro- we finally insert it into Eq. (5.3), resulting in

jection of the inverse Jacobian onto the space orthogonal
to that spanned by the states uDF (m)l and, hence, the second ux(l11)l 5 ux(l)l 2 G (l2M)uF (l)l

(5.30)term in Eq. (5.22) should vanish. Combining (5.21) and
(5.22) we thus arrive at the desired rank-M update formula: 2 Ol21

m5l2M
c(l)

m [uDx(m)l 2 G (l2M)uDF (m)l],

G (l11) 2 G (l112M) 5 Ol

m,k5l112M
(a21)mk[uDx(m)lkDF (k)u

(5.24)
where we have abbreviated

2 G (l112M)uDF (m)lkDF (k)u]
c(l)

m 5 Ol21

k5l2M
(a21)mkkDF (k)uF (l)l. (5.31)

which is the proper generalization of the rank-1 update
formula (5.16) of the original Broyden method and reduces From this last equation it becomes obvious that even the
exactly to that result for M 5 1. As an initial guess for the explicit inversion of the overlap matrix a can be circum-
inverse Jacobian we finally use vented since Eq. (5.31) presents just a linear equation sys-

tem with solution vector c(l) [17, 18].
Furthermore, we point out that also the above-men-G (l112M) 5 2b(l112M) I . (5.25)
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tioned problem of storing the huge inverse Jacobian matrix erbilt and Louie in order to provide for a greater flexibility
of the method and which may be fixed each iteration anewhas been resolved by now. This is, first, due to the calcula-

tion of the inverse Jacobian by direct optimization instead (hence the superscript).
Minimizing now the functional E with respect to theof stepwise update, as explained before. Second, we here

take advantage of the observation made by Srivastava that matrix elements of the inverse Jacobian we get
the update as well as the inverse Jacobian itself is just a
sum of dyadic products which enter the formalism only

(w (l11)
0 )2(G (l11) 2 G (l112M)) 5 Ol

m5l112M

(w (l11)
m )2

amm (6.2)
when applied to residual vectors as in Eq. (5.3) [14]. Hence
by combining the vectors in these matrix–vector products

[uDx(m)lkDF (m)u 2 G (l11)uDF (m)lkDF (m)u].just the other way round we arrive at products of dot-
products and vectors and all the huge matrices have col-
lapsed. Note, that since the inverse Jacobian G (l11) entered Eq.

Altogether, we are left with storing the two N-compo- (6.1) quadratically it here still appears on the right-hand
nent vectors ux(l)l and uF (l)l of the actual and the 2M vectors side within the sum. Solving for G (l11) leads to
uD x(m)l and uDF (m)l of the M previous iterations. In addition
we have to solve a linear equation system of order M. G (l11) 5 A(l11)[B (l11)]21, (6.3)

VI. MODIFIED BROYDEN METHOD where

In order to allow for a thorough comparison of the meth-
ods discussed in this work which will be aimed at in Section A(l11) 5 (w (l11)

0 )2G (l112M) 1 Ol

m5l112M

(w (l11)
m )2

amm
uDx(m)lkDF (m)u

VII we now give a brief sketch of the modified Broyden
(6.4)method proposed by Vanderbilt and Louie [16]. However,

for the reasons discussed previously we here turn directly
andto its formulation in terms of the inverse Jacobian.

As already mentioned before, Vanderbilt and Louie
started out from their observation that the Jacobian to be

B (l11) 5 (w (l11)
0 )2 I 1 Ol

m5l112M

(w (l11)
m )2

amm
uDF (m)lkDF (m)u.updated should fulfil the conditions (5.19) all at once. In

the modified Broyden method founded by these authors (6.5)
this is achieved by minimization of a functional which con-
tains the Frobenius norm, as well as all the conditions At first glance it seems that by now we are faced with the
(5.19), and which in terms of the inverse Jacobian reads inversion of a large (N 3 N)-matrix since the vectors
as [16, 17] uDF (m)l entering B(l11) are of length N. However, as can

be read off from Eq. (6.5), B(l11) simply consists of a linear
E 5 (w (l11)

0 )2iG (l11) 2 G (l112M)i2

(6.1)
combination of the unity operator and M projection opera-
tors onto M one-dimensional but mutually not necessarily

1 Ol

m5l112M

(w (l11)
m )2

amm
u uDx(m)l 2 G (l11)uDF (m)lu2. orthogonal subspaces, where usually M is much smaller

than N. As a consequence the inversion of B(l11) may be
reduced to the inversion of an (M 3 M)-matrix. In short,

(Note, that our definition of the inverse Jacobian differs this procedure is equivalent to calculating the resolvent
by a minus sign from that of above authors). of an operator given in terms of its eigenvalues and the

As concerns the functional (6.1) the differences to our projection operators onto the corresponding eigenspaces.
approach (5.26) are easily stated: First, instead of strictly Being a bit more specific, we first rewrite the operator
enforcing the constraints (5.20) by coupling them to the B(l11) as
minimization of the Frobenius norm via Lagrange multipli-
ers they are here incorporated directly as part of the func- B (l11) 5 (w (l11)

0 )2(I 2 P F) 1 P FB (l11) P F , (6.6)
tional to be minimized. Second, as a consequence and in
contrast to our approach the inverse Jacobian here enters

where P F is the projector onto the space spanned by theeach term in the sum quadratically which will lead to the
states (w (l11)

m /Ïamm) uDF (m)l, m 5 l 1 1 2 M, ..., l. Frominversion of a huge N 3 N matrix, even if this can be
this the inverse may be written down immediately ashandled by applying the Sherman–Morrison formula [1]

or else be reduced to the inversion of a M 3 M matrix as
we will see later on. Third, there now appear the already [B (l11)]21 5

1
(w (l11)

0 )2 (I 2 P F) 1 P F[B (l11)]21 P F , (6.7)
mentioned weights w (l11)

m which were introduced by Vand-
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where, however, taking the inverse of B(l11) on the right- Ol21

m5l2M
c (l)

m

Ïakk

w(l11)
k

Ïamm

w (l11)
m

b̃(l)
mk 5 kDF (k)uF (l)l (6.13)hand side only poses an (M 3 M)-problem. Leaving the

details of this evaluation to the Appendix we note the
final result, to be solved for the coefficients c (l)

m .
In concluding this section we point to a different deriva-

tion of the modified Broyden method for the inverse Jaco-
[B (l11)]21 5

1
(w (l11)

0 )2 bian which was given by Johnson [17, 18]. It deviates from
our Eq. (6.1) only in using G (l), instead of G (l112M). How-
ever, as we have pointed out in Section V, inserting G (l)FI 2 Ol

k,n5l112M

w (l11)
n

Ïann

w (l11)
k

Ïakk

((b̃(l11))21)nkuDF (n)lkDF (k)uG ,
here is not at all necessary when taking M conditions into
account which contain all the information gained after(6.8)
determination of G (l112M). For this reason, use of G (l) does
not really improve the scheme but, in contrast, requires in

where the matrix b̃(l11) is defined by addition an inductive calculation of the inverse Jacobian,
as well as the explicit inversion of the matrix b̃ (see Refs.
[17, 18] for details).b̃ (l11)

nk :5 (w (l11)
0 )2dnk 1 ã(l11)

nk (6.9)

VII. COMPARISON OF METHODS
and

After the description of the Anderson mixing, as well
as several formulations of the Broyden update, we now

ã(l11)
nk :5

w(l11)
n

Ïann

w(l11)
k

Ïakk

kDF (n)uDF (k)l. (6.10) turn to the comparison of these schemes. To this end we
first relate the modified Broyden method as described in
Section VI to the generalized scheme proposed in Sec-

Combining now Eqs. (6.3), (6.4), and (6.8) we get for the tion V:
update of the inverse Jacobian As has become obvious from the previous derivations

both schemes, despite their different starting points, arrive
at results which differ only in that the modified Broyden

G (l11) 2 G (l112M) 5 2G (l112M) Ol

k,n5l112M

w(l11)
n

Ïann

w(l11)
k

Ïakk

((b̃(l11))21)nk method, in addition, contains the weights which were intro-
duced originally by Vanderbilt and Louie in order to pro-
vide for a greater flexibility of the method.uDF (n)lkDF (k)u 1

1
(w (l11)

0 )2 Ol

m,k5l112M

w(l11)
m

Ïamm

w(l11)
k

Ïakk

(6.11)
Although such an ansatz indeed appears to be very

promising, we will now show that this flexibility cannot be
used to accelerate the convergence of the iteration process.Sdmk 2 Ol

n5l112M
ã(l11)

mn ((b̃(l11))21)nkD3 uDx(m)lkDF (k)u.
This is due to the following reasons:

Of the M 1 1 conditions entering (6.1), those contained
in the sum, i.e., those taken from Eq. (5.20), may be fulfilledSimplifying the brackets on the right-hand side with the
independently since they fix only projections of the inversehelp of Eq. (6.9) we finally arrive at the rank-M update
Jacobian G (l11) onto the M linear independent directionsformula
uDF (m)l, m 5 l 1 1 2 M, ..., l. (For the time being we
exclude the case of linear dependencies in the residual
vector space which we will address in Section VIII.) As aG (l11) 2 G (l112M) 5 Ol

k,n5l112M

w(l11)
n

Ïann

w(l11)
k

Ïakk

((b̃(l11))21)nk

(6.12)
consequence, when setting w0 5 0 all the wm-terms in Eq.
(6.1) may be minimized independently with respect to the

[uDx(n)lkDF (k)u 2 G (l112M)uDF (n)lkDF (k)u] respective elements of the inverse Jacobian and, hence, all
the corresponding weights wm lose their meaning.

For w0 ? 0 the situation is a bit different since then, onwhich is the same as Eq. (5.24) of the generalized Broyden
method with the elements of the inverse overlap matrix, every element of the inverse Jacobian which is subject to

one of the wm-conditions (5.20) actually, we impose a sec-(a21)nk replaced by w (l11)
n w (l11)

k ((b̃(l11))21)nk . As a conse-
quence when combining Eq. (6.12) with Eq. (5.3) in order ond condition mediated by the w0-term. These two condi-

tions cannot be fulfilled independently but, rather, are into calculate the input vector for the following iteration we
arrive at Eq. (5.30) with the just-mentioned replacement. concurrence with the relative weights w2

0/(w2
0 1 w2

m) and
w2

m/(w2
0 1 w2

m), respectively. The important point to noticeMoreover, we can likewise avoid the explicit inversion of
matrix b̃ and are left with the linear equation system now is that these two conditions push the inverse Jacobian
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FIG. 3. Same as Fig. 1 but with weights wm 5 kF(m)uF(m)l21/2 forFIG. 1. Rate of convergence using the modified Broyden method for
updating the inverse Jacobian with different values for w0 (the curve m $ 1. Again to avoid instabilities the wm are limited to the range [1, 1012].
marked w0 5 0 actually was calculated with w0 5 0.01 in order to avoid
numerical instabilities). All other weights have been set to wm 5 1 for
m $ 1. The mixing parameter is b 5 0.5.

full scheme proposed by Vanderbilt and Louie in the form
outlined in the previous section and applied it to the test
case presented in Section II. The results are shown in Figs.

to opposite directions: Whereas the wm-conditions enforce 1 to 4, where we have allowed for all previous iterations
an update of the inverse Jacobian according to the informa- to be mixed in and have used two different values of the
tion gained from previous iterations the w0-term in contrast mixing parameter b. In each figure the weight w0 varied
hinders any changes of this matrix by requiring the Frobe- from 0.01 to 20, whereas all other weights were fixed to
nius norm of the update to be minimal. This conflict be- wm 5 1 in Figs. 1 and 2 and to wm 5 1/kF (m)uF (m)l1/2 in Figs.
comes more obvious when investigating the situation 3 and 4. The latter choice was proposed by Johnson [17].
w2

m ! w2
0 which means to ignore all the conditions (5.20) The curves presented support the arguments just given

and to stay with the initial inverse Jacobian, hence, with as they show the whole variation from full update to simple
simple mixing all the time. mixing when w0 is increased. Even in Figs. 3 and 4, where

As a consequence, in the intermediate range of weights we emphasize the ‘‘good’’ iteration vectors lying near the
we are just faced with a concurrence of simple mixing final solution by attaching ‘‘quality dependent’’ weights
versus a full update and for any w2

0 . 0 this results in an which reduce the relative influence of w0 , the curves for
effective slowdown of the iteration process. w0 . 0 clearly deviate from the optimal result, w0 5 0.

In order to demonstrate this we have implemented the Furthermore, note the increasing sensitivity of the curves

FIG. 2. Same as Fig. 1 but for b 5 0.7. FIG. 4. Same as Fig. 3 but for b 5 0.7.
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to the mixing parameter b for the higher w0-values, which words, the scheme presented by Vanderbilt and Louie, if
tuned to optimal convergence, would lead to our general-is typical for simple mixing.

For completeness we add that for w0 . 0, but not too ized Broyden method as described in Section V, but formu-
lated in terms of the Jacobian, instead of the inverse Jaco-large, the modified Broyden method in the version derived

by Johnson yields slightly better results than the curves bian. Hence, when investigating the relationship between
Broyden’s first and second method we can likewise workshown here. This traces back to the fact that his ansatz

corresponds to Eq. (6.1) with G (l112M) replaced by G (l). with the generalized method given in Section V and its
counterpart based on the Jacobian itself.As a consequence for values of w0 of order one in Johnson’s

scheme the concurrence is not exactly between full up- At first glance there seems to be no reason why
Broyden’s first and second method should not performdate and simple mixing but, rather, between rank-M and

rank-1 updates. Since the latter is better than simple mixing equally well. Yet, as we will soon realize, Broyden’s first
method has a distinct disadvantage which could decelerateJohnson gets a bit faster convergence for w0 lying in this

medium range. For w0 ! 1 and for large w0 , however, the iteration process. In order to demonstrate this we start
out looking in more detail at the inverse Jacobian. Combin-this rank-1 property is suppressed and Johnson’s method

becomes more similar to the scheme by Vanderbilt and ing Eqs. (5.22) to (5.24) we get the identities
Louie.

Nevertheless, as Vanderbilt and Louie have claimed and G (l11) 5 G (l112M)(I 2 P F)
as we have discussed in detail in Section V, exchanging
the rank-M update with a rank-1 update just takes away 1 Ol

m,k5l112M
(a21)mkuDx(m)lkDF (k)u

the systematics of the whole scheme and for this reason,
also, Johnson’s method is faced with an effective decelera-

5 G (l112M)(I 2 P F) (7.2)
tion for w0 . 0. Finally, for w0 5 0 the results of his scheme
are identical to those shown here. Hence, for all versions

1 P x Ol

m,k5l112M
(a21)mkuDx(m)lkDF (k)u P Fof the modified Broyden method we arrive at the conclu-

sion that when aiming at a fast convergence of the iteration
5 G (l112M)(I 2 P F) 1 P xG (l11) P F ,process the best choice is to put w0 5 0 in the ansatz (6.1).

However, as already argued above in this (optimal) case,
also, all other weights wm cancel out from the modified where the projection operator P x projects onto the space

spanned by the states uDx(m)l, m 5 l 1 1 2 M, ..., l (weBroyden scheme. This becomes even more obvious on
inspection of Eq. (6.13) which may be readily simplified to denote this as the x-space) and is defined in analogy with

Eq. (5.23). A complementary relation to Eq. (7.2) holds
for the Jacobian J(l11).

At this point it should be noted that, in general, J (l11) isOl21

m5l2M
c (l)

m F(w (l11)
0 )2

(w (l11)
k )2 dmk 1 1G amk 5 kDF (k)uF (l)l. (7.1)

not identical to the inverse of G (l11) as can be proven by
direct multiplication. Thus updating the inverse Jacobian
is indeed different from updating the Jacobian itself, fol-The same result follows directly when looking at Eqs. (13)

and (15) of Johnson or Eqs. (40) to (43) of van Leuken, lowed by explicit inversion. Actually, this is not quite sur-
prising as the Broyden update is meant as an approxima-who concentrated in particular on w0 P 0 in their final

equations [17, 18]. tion to the exact matrix (Jacobian or inverse) based on
knowledge collected during the iteration process.Now with all the weights taken away from the modified

Broyden method the versions of Vanderbilt and Louie (in According to the original idea of Broyden the updated
inverse Jacobian G (l11) is just the old one (G (l112M)) withthe form described in Section VII, i.e., as applied to the

inverse Jacobian) as well as Johnson’s become identical. certain matrix elements replaced such that the set of condi-
tions (5.20) is fulfilled. This is also obvious from the lastMoreover, they arrive at exactly the same results as the

generalized Broyden method formulated in Section VI. line of Eq. (7.2) where the second term is embraced by
projection operators onto the subspaces spanned by theIn summary, if all the weights of the modified Broyden

method are used to tune the iteration process to its fastest vectors entering Eq. (5.20) and the first term is just the
old inverse Jacobian its application being restricted to theconvergence they, in fact, cancel out and the results of this

scheme, despite its different starting point (6.1), become subspace orthogonal to the F-space (to which the second
term is applied). (In this context the exact form of theidentical to those of our much simpler formulation.

Although we have so far concentrated on the discussion initial guess G (l112M) does not really matter. It is, however,
important that G (l112M) contains only knowledge collectedof Broyden’s method for the inverse Jacobian it is obvious

that all the previous arguments likewise apply to the corre- prior to the actual update step.) Thus each element of the
inverse Jacobian contains either the corresponding ele-sponding Broyden method for the Jacobian itself. In other
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Jacobian and the Jacobian itself. The results for different
values of M are shown in Figs. 5 and 6 which as expected
reveal the small but significant superiority of Broyden’s
second method. Of course, this slight difference will not
have a major influence on applications of these schemes.
It is, however, important in the present context of a com-
parative study of methods.

Next we turn to the comparison of the Anderson mixing
and the Broyden update for the inverse Jacobian as formu-
lated in Sections IV and V:

Similar comparisons based on numerical calculations al-
ready exist in the literature [17, 18]. However, these au-
thors have only considered the Anderson scheme with
at most two previous iterations mixed in; i.e., they have
concentrated on the special case M 5 2. At the same time

FIG. 5. Rate of convergence using the generalized Broyden method the modified Broyden method was always used with the
for updating the inverse Jacobian with different numbers M of iterations full history built in, i.e., M 5 l. Comparisons based on
to be mixed in. The mixing parameter is b 5 1.0. these choices then yielded the not quite surprising result

that the modified Broyden scheme is superior to the An-
derson mixing.

As concerns theoretical investigations Blügel pointed toment of the old inverse Jacobian G (l112M) or else a new
one fulfilling Eq. (5.20). Both portions are strictly sepa- interrelations, between the Anderson and the Broyden

methods but unfortunately he did not consider theserated; i.e., there is no element of the inverse Jacobian
which contains a mixture of the first and second terms in schemes with more than one previous iteration taken into

account [22]. This was done by van Leuken who redefinedEq. (7.2). Of course, the same arguments again hold for
the update of the Jacobian itself. However, according to the Anderson scheme in terms of difference vectors uDx(m)l

and inserted weights wm in order to allow for a comparisonEq. (5.3) we finally do need the inverse Jacobian. Hence
in contrast to working directly with the inverse Jacobian to the modified Broyden scheme as formulated by Johnson

[18]. He then arrived at the same results for both schemeswe now have to invert the updated Jacobian thus making
the fundamental difference between Broyden’s first and but, due to the weights, he could not observe the full

identity and regarded the modified Broyden method as asecond method. Since when inverting the updated Jaco-
bian we inevitably remove the just-mentioned separation generalization of the Anderson mixing.

According to van Leuken the whole proof may be re-of the portions corresponding to J (l112M) and the conditions
(5.19), respectively. This might be related to the fact that duced to a reformulation of the Anderson mixing in terms

of difference vectors, instead of input or residual vectorsthe first term in Eq. (7.2) is not preceded by a projection
operator (I 2 P x), in which case inversion would pre-
serve the separation of the orthogonal subspaces. Hence
by inverting the Jacobian we actually end up with a mixture
of the two terms contributing to Eq. (7.2) (i.e., its counter-
part for J (l11)). As an effect after inversion each element
of (J (l11))21 is a linear combination of terms which could
be traced back to either J (l112M) or else the matrix arising
from the conditions (5.19). Insofar as the situation is not
unlike the one described above, where the introduction of
weights led to the concurrence of terms which correspond
to either simple mixing or full update, in the same manner
inversion of the updated Jacobian will also lead to an
effective deceleration as compared to updating the inverse
Jacobian. Although this will be far from being a drastic
effect we still finally note the principal superiority of
Broyden’s second method over his first one.

In order to get a better feeling for the previous argu-
ments we have implemented the generalized Broyden FIG. 6. Same as Fig. 5 but for updating the Jacobian itself followed

by inversion.method as described in Section V for both the inverse
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themselves; thus we start out from Eq. (4.1) and rewrite In summary, the Anderson mixing and the generalized
the general input vector in the following way: second Broyden method as outlined in Section V are fully

identical. Taken together with the arguments given in the
first part of this section this statement, moreover, holds

ux(l)l 5 ux(l)l 1 OM
j51

q (l)
j (ux(l2j)l 2 ux(l)l) for the modified second Broyden method when tuned to

optimal convergence.
The just-demonstrated identity of the Anderson mixing5 ux(l)l 2 OM

j51
q (l)

j Ol21

m5l2j
(ux(m11)l 2 ux(m)l) (7.3)

and the generalized second Broyden method now offer a
new point of view for the discussion of weights in the

5 ux(l)l 2 Ol21

m5l2M
c (l)

m uDx(m)l. modified second Broyden scheme. As we can tell from Eq.
(6.1) these weights could be likewise interpreted as an
effective scaling of the difference vectors uDx(m)l and

Here we have used the definition (5.5) of difference vectors uDF(m)l by a factor Ïw2
m/w2

0 1 w2
m). As a consequence, as

and furthermore abbreviated: soon as w0 is nonzero and all the other weights are not
equal, this would result in a change of metric in the spaces
spanned by the above vectors. Using now the equivalencec (l)

m 5 OM
j5l2m

q (l)
j . (7.4)

to the Anderson mixing which approaches the final solu-
tion by minimizing in the residual vector space it becomes

The analogous steps performed for the general residual obvious that any change in the metric would bring us away
vector yield from the optimum and thus worsen the effectiveness of

the method.
Before we proceed it is worth noting that the aboveuF (l)l 5 uF (l)l 2 Ol21

m5l2M
c (l)

m uDF (m)l. (7.5)
derived formulation of the Anderson mixing is fully equiv-
alent to the one given in Section IV. In particular we point
out that the matrices entering Eqs. (4.3) and (7.6) resultIn the same manner as described in Section IV the
from each other by applying elementary row and columnexpansion coefficients entering Eqs. (7.3) and (7.5) are

determined by minimizing the norm E 5 kF (l)uF (l)l of the operations and, hence, have exactly the same determinant.
general residual vector (7.5) with respect to the coefficients As a consequence whenever there exist linear dependen-
c (l)

m . This leads to the linear equation system, cies in the system of residual vectors which cause the deter-
minant to vanish they would affect both formulations in
the same manner and thus lead to the same instabilities.Ol21

m5l2M
kDF (n)uDF (m)lc (l)

m 5 kDF (n)uF (l)l ;n5l2M,...,l21 (7.6)
However, we now even realize that this also holds for
the Broyden update for which the corresponding linear
equation system is given by Eq. (5.31).which has to be solved for the coefficients c (l)

m . Once these
Altogether, we realize that regarding any of the twoare known the input vector for the following iteration will

methods as superior is not correct. In contrast, the identitybe constructed according to Eq. (4.4) which in terms of
of the formalisms should be related to the completely dif-the c (l)

m reads as
ferent starting points the Anderson mixing and the
Broyden update take and which offer two different and

ux(l11)l 5 ux(l)l 1 b (l)uF (l)l 2 Ol21

m5l2M
c (l)

m [uDx(m)l 1 b (l)uDF (m)l]. rather complementary points of view of the same problem.
This will be used in the following section and might, in(7.7)
general, be helpful for further developments.

With the reformulation of the Anderson mixing at hand
we are now able to relate it to the results of the Broyden VIII. EXTENDED ANDERSON MIXING
method which works with difference vectors from the very
beginning. To be concrete we compare Eqs. (7.6) and (7.7) Having witnessed the full identity of the Anderson mix-

ing and the generalized second Broyden update, as wellto Eqs. (5.31) and (5.30) of the generalized Broyden
method thus revealing the full identity of both schemes if as their superiority over the generalized first Broyden

method we are still faced with the situation that linearthe simple mixing ansatz (5.25) is used as an initial guess
for the inverse Jacobian of the Broyden method. Yet it dependencies in the set of residual vectors might prohibit

a proper solution of the linear equation systems (4.3),should be noted that any other choice would require some
information about the system to be iterated and so the (5.31), or (7.6), even if this in practice never has been

observed by the author. We will now present a quite simplesimple mixing in any case constitutes the best starting point.
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extension of the Anderson mixing which in any case helps
to avoid such problems:

Starting from the reformulation of the Anderson mixing
presented in Section VII we now prevent the determinant
of the overlap matrix in Eq. (7.6) from vanishing by adding
a small but finite value to the diagonal elements thus corre-
sponding to w0

2 in the modified Broyden scheme according
to Vanderbilt and Louie. For the Anderson mixing this
could easily be achieved by defining a new functional

E9 5 E 1 w2
0 Ol21

m5l2M
(c (l)

m )2amm (8.1)

which when minimized leads to the following linear equa-
tion system: FIG. 7. Rate of convergence using the extended Anderson method

with different numbers M of iterations to be mixed in. The mixing parame-
ter is b 5 0.5.Ol21

m5l2M
(1 1 w2

0dnm)kDF(n)uDF(m)lc (l)
m

(8.2)
5 kDF(n)uF(l)l ;n5l2M,...,l21 . method shown in Section VII. Due to this identity we

furthermore refer to Fig. 5 which would be the same if
calculated with the extended Anderson mixing (Actually,To be pictorial we point out that the uniqueness in the
Figs. 5 and 6 were calculated with w0 5 0.01 in order todetermination of the coefficients c (l)

m , if taken away by
avoid numerical instabilities). Figures 5, 7, and 8 clearlylinear dependencies, can be restored by adding a further
demonstrate a number of appealing features: First, we ob-‘‘symmetry breaking’’ condition which, however, must not
serve an optimal convergence as represented by the curvechange the problem we want to solve too drastically. For
for M 5 6 already for lower values, namely M 5 4 andthis reason in practice we put w0

2 to 1024.
M 5 5 for high and low values of b, respectively. ThisAccording to the discussion of the modified Broyden
reflects the opinion expressed by Anderson that the powermethod in the previous section, introducing a small but
of the method increases slowly for M . 3 since then wefinite additive diagonal element w0

2 causes a minor deceler-
would only mix in the poor vectors of early iterations.ation of the iteration process. Yet above extension of the
Following his suggestion to fix M to 4 or 5 we arrive inAnderson mixing does not change the metric in the space
practice at a good convergence with the vectors of only aspanned by the vectors uDF(m)l and, hence, the linear de-
few previous iterations to be stored and a linear equationpendencies have been resolved without affecting the final
system of low order to be solved.solution. Furthermore, as test calculations have shown, the

results for w0
2 5 1024 show almost no deviation from those

obtained with w0
2 5 0.

In summary, we have finally demonstrated that argu-
ments against using the Anderson mixing with M . 2 and
which, according to the proof given in the previous section,
also apply to the Broyden update for the same M do not
really hold since there exist efficient means to avoid
such problems.

In order to illustrate the schemes discussed in this work
we also applied the extended Anderson mixing to the test
case defined in Section II. The results are presented in
Figs. 7 and 8 for two different mixing parameters and
several values of the number M of previous iterations taken
into account. Note, that the curves marked M 5 0 corre-
spond to simple mixing. Moreover, we point out that the
curve for M 5 6 in Fig. 7 is identical to those obtained for
w0 5 0.01 in Figs. 1 and 3, thus reflecting the identity of

FIG. 8. Same as Fig. 7 but for b 5 0.2.the Anderson mixing and the generalized second Broyden
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Second, on comparison of Figs. 5, 7, and 8 we note the schemes are faced with, we finally proposed an extension
to the Anderson mixing which helps to avoid such prob-high sensitivity on the mixing parameter for the simple

mixing and the low M Anderson mixing as well as the lems but preserves the good convergence properties of
this method.decreasing dependence on b for increasing values of M.

Thus with the number M being not too small the choice As concerns the choice of parameters, our test calcula-
tions confirmed prior suggestions of Anderson that to useof b becomes rather unimportant. With the identity of the

Anderson mixing and the Broyden update at hand all this a value of 4 or 5 for the number M of previous iterations
taken into account should be optimal. Moreover, for thisis in full agreement with the findings of van Leuken.

Finally, the examples also show that b should not be choice the iteration process becomes rather independent
of the mixing parameter b. However, we suggest fixing ittoo small. Following these results, as well as the experience

of Dederichs and Zeller and van Leuken, we here suggest to 0.5.
Finally, we point out that all the schemes discussed hereusing b 5 0.5 which has the advantage of damping the

oscillations in early iterations. Giving more conclusive reci- not only apply to the solution of nonlinear equation sys-
tems but are likewise suited to unconstrained multidimen-pes for the choice of M and b is beyond the possibilities

of our very simple test case, as well as the scope of the sional minimizations.
present more general paper. Furthermore, our suggestions
should in any case be combined with experience with the APPENDIX: EXPLICIT MATRIX INVERSION
actual problem at hand.

The objective of the appendix is the inversion of the
matrix B defined by Eq. (6.5). Dropping some indices thisIX. CONCLUSION
matrix reads as

In the present paper we investigated different types of
methods aiming at an acceleration of convergence of itera- B 5 w2

0 I 1 OM
m51

Pm , (A1)
tive vector sequences, namely generalized secant schemes
and quasi-Newton–Raphson methods. In particular we dis-
cussed two prominent and often used members of these where
classes, the Anderson mixing and the Broyden update,
both generalized to the consideration of arbitrarily many Pm :5 uF̃mlkF̃mu (A2)
previous iterations.

For the generalized Broyden method we presented a and
new derivation which may be viewed as a straightforward
generalization of the original rank-1 update invented by
Broyden. Hence, being fully in the spirit of the latter, our uF̃ml :5

wm

Ïamm

uFml. (A3)
new formulation seems to be its most simple general-
ization.

As stressed by our notation the operator B is a linearFurthermore, we investigated in detail the modified
combination of the unity operator and projectors onto theBroyden method introduced by Vanderbilt and Louie
states uFml which, however, need not be orthogonal.which also generalizes the rank-1 Broyden update but, in

Next the general projector onto the whole space spannedaddition, contains weights as a means to increase flexibility.
by all the uFml is defined byIn particular, as we could show if these weights are used

to tune the iteration process to its fastest convergence,
they in fact cancel out from the formalism and the results PF :5 OM

n,k51
uF̃nl(ã21)nkkF̃ku, (A4)

of the modified Broyden scheme become identical to those
of our much simpler generalized Broyden method.

where the matrix ã is the overlap matrix (6.10). It can beComparison of Broyden’s first and second methods in
easily proved that PF , indeed, has all the properties of atheir generalized versions clearly revealed the principal
projection operator.superiority of the latter scheme.

With these preparations at hand we get from Eq. (A1):Extending the work of van Leuken we could proof the
identity of the Anderson mixing and the second Broyden
method in their generalized forms. Thus neither of these

PFBPF 5 w2
0 PF 1 OM

m51
Pm

(A5)
schemes is superior but in contrast, due to the different
underlying concepts, they both offer complementary points
of view, which might be helpful for further developments. 5 OM

m,n,k51
uF̃ml(ã21)mnb̃nkkF̃ku,

Dealing with potential numerical difficulties all these
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